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A mathematical connection is established between classes of problems in pattern 
recognition and in statistical mechanics. More explicitly, the former class embraces 
problems arising from the decision-theoretic approach to the automatic recognition 
of certain properties of patterns containing many targets. The latter class contains almost 
all problems involving the statistical mechanics of classical systems of interacting 
particles. The usefulness of the mathematicaI connection lies in the fact that it provides 
a bridge for the transfer of approximation methodologies from one area to the other. 
As examples of such a transfer this paper presents applications of a least mean square 
approximation method, which is well known in pattern recognition, to two problems 
in classical statistical mechanics, namely, the one-dimensional Ising problem and the 
one-component plasma problem. These problems were chosen because their solutions 
are well understood (the exact solution of the one-dimensional Ising model and the 
solution of the one-component plasma that is exact in the low concentration limit 
are both very well known) and consequently they are appropriate as "test beds" for 
the new approximation method. The simplest nontrivial approximate trial functions 
were used for the calculation of the average values of certain observables and the 
results were in agreement with the corresponding exact results for the Ising model 
in the limit of high temperature and for the one-component plasma in the limit of low 
concentration. 

KEY W O R D S :  Decision theory; Ising model; Least square estimation; Pattern 
recognition; Plasmas; Statistical mechanics. 

1. I N T R O D U C T I O N  

The decision-theoretic t rea tment  of  the recogni t ion (or est imation) o f  a prescribed 

proper ty  o f  patterns involving many  targets with addit ive noise yields a posteriori  

distr ibution functions (condit ioned by the observat ion o f  the pat tern density function) 

that  are mathemat ica l ly  identical to the configurat ional  distr ibution functions arising 

1 Science Center, North American Rockwell Corporation, Thousand Oaks, California 91360. 

71 



72 John M. Richardson 

in the statistical mechanics of  classical systems of interacting particles with arbitrary 
external forces. This mathematical connection between two different classes of  
problems in unrelated fields provides an interdisciplinary bridge for the transfer of 
approximation techniques from one field to the other. The main emphasis in the present 
paper is the application of the least mean square method for computing conditional 
averages (a well-known procedure in pattern recognition) to the treatment of  mathe- 
matically isomorphic problems in classical statistical mechanics. 

2. R E C O G N I T I O N  O F  M U L T I P L E  T A R G E T  P A T T E R N S  

Consider a class of  patterns each of  which contains N identical targets of  known 
structure, but unknown positions, orientations, etc., against a noise-like background. 
We assume that the possible observed pattern densities are given by the stochastic 
model 

N 

p(r) = Z - s , ,  + (1) 
i = 1  

where r and the s~ are vectors in the p-dimensional space in which the pattern is 
exhibited. The function a(r - -  s~, ~ )  is the contribution to the pattern density of  a 
target centered at the position s~. The symbol ~ ,  an n-dimensional vector, gives the 
internal state of  target i, e.g., the orientation (if not circularly or spherically sym- 
metric), the nature of  the illumination, etc. We assume that the a pr ior i  distribution 
of the s~ and ~i is given by the distribution function 2 

P({si, ~i}) (2) 

which may, for example, contain a statistical bias against targets overlapping to a 
significant degree. A particularly simple assumption is that the target position and 
internal states are completely random with no bias against overlap, in which 
case P({s~, c~}) is a constant. The function v(r) representing the remainder of  the 
pattern is assumed here to be a stationary (spatially) Gaussian random process 
defined by the relations 

Ev(r) = 0 (3a) 

Ev(r) v(r') = C(r - -  r ') (3b) 

where E is the averaging operator and where C(r --  r ') is the correlation function. 
One might be tempted to give a positive value to Ev(r) such that the probability of 
p(r) becoming negative at any point can be made arbitrarily small. This is immaterial 
since we can assume that p(r) is related to the physical representation of the pattern 
(e.g., light intensity from the face of  a cathode ray tube, local transmission coefficient 

2 We will use the curly brackets { } to denote "set of." For example, [st, c~] denotes the set sl ,..., 
SN, c~ z ,..., c~N. We will use {0(r)} to denote the continuous set of values of p(r) for all r in an 
appropriate domain to be defined later. It will usually be clear what parameter or variable labels 
the members of the set. 
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of a photographic transparency, etc.) by an appropriate point-to-point trans- 
formation. 

We assume that the observed pattern is confined to a rectangular region X) of 
r-space. For the sake of analytic simplicity we will assume that or(r, ~)  and v(r) are 
periodic in the entire r-space with a period ~. The periodicity of v(r) implies of course 
that the correlation function C(r) is periodic in the same sense. Although the target 
positions s~ are confined to the region X2, the distribution function must reflect the 
same statistical bias (if any) against the overlap of a target with the periodic replication 
of a second target as against the overlap of the targets themselves. These assumptions 
are equivalent in every way to the periodic boundary conditions widely employed in 
theoretical physics. 

Now the problem we wish to solve is: given an observation of the pattern density 
p(r), what is the best estimate in a mean square sense of the value of a prescribed 
function of the target positions and internal states (si, ~}? To be more explicit, let 
us denote the observed pattern density by t~(r) [using the language of mathematical 
statistics, t~(r) is a sample function of the random proces p(r)]. Let us assume that the 
prescribed function is 

~b({si, ~i}) (4) 

and let the estimator be 

~({t~(r)}) (5) 

which is as yet an arbitrary functional of the observed pattern density t~(r). The 
problem of choosing the optimal form of q~({/~(r)}) involves minimizing the difference 
between q~ and ~ in some sense. In order that ~ and ~ deviate from each other as 
little as possible for a large number of reasonably probable cases, we will minimize 
the mean square error 

E[~({p(r)}) -- ~({s~, ~})12 (6) 

in which we have substituted the random process p(r) given by (1) for fi(r). The 
averaging operation involves of course all random variables and random processes, 
i.e., {si, ~i} and v(r). 

3. E X A C T  S O L U T I O N  O F  T H E  R E C O G N I T I O N  P R O B L E M  

The minimization problem (6) has a solution that is well known in decision 
theory, 3 namely, that the optimal q~ is given by 

~({t~(r))) = E(~({s , ,  ~) )  r (~(r))) (7) 

3 See, for example, T. S. Ferguson, Mathematical Statistics, A Decision Theoretic Approach, Academic 
Press, New York and London (1967). 
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where E(~ ] {t~}) is the a posteriori  average of 4~ conditioned by the observation of the 
function p(r) for all r ~ g2. We can rewrite (7) in the form 

N 

~({P}) = ~ 1-I dsi d ~ ( { s ~ ,  ~,)) P((s , ,  ~i) [{~}) (8) 
i = l  

where P{s~, a~} J {?}) is the a posteriori  distribution of the target positions and internal 
states {si, ~i} conditioned by the inequality I p(r) -- •(r)l < 3, r ~ (2. 

In order to write this distribution in a compact form it is necessary to introduce 
additional notation. We will define the inner product of two quadratically integrable 
functions u(r) and v(r) by 

(u, v) = fs~ dr f~  dr'u(r) D(r -- r ')v(r') (9) 

where D(r -- r') is the inverse correlation function defined by 

dr'C(r r') D(r r") 3(r r") (10) 

where 3(r -- r") is the 3-function in thep-dimensional r space. The norm corresponding 
to (u, v) is of course defined by 

II u II = (u0 u)a/~ (11) 

The Gaussian distribution function P({v(r)}) (unnormalized in the function space) 
can now be written: 

log P({v(r)}) = -�89 v II 2 (12) 

To obtain the a posteriori  distribution function of {s~, ~} we perform a functional 
integration of P((v(r)}) P((si,  ar on v(r) constrained by the condition ] p --/~ J ~ 8, 
r E ~,  finally obtaining (after 3 -~ 0) 

log P({s~, ~} l{fi}) ~ -- 1 fi _ ~ ~i 2 - / l o g  P({s~, c~i}) + log A (13) 
i = 1  

where A is determined by the normalization condition 

f V[ dsi daiP({s~, ~i} I{p}) = 1 

The symbol ~ is an abbreviated notation for ~(r -- si, ~i). 

(14) 

4. D I R E C T  V A R I A T I O N A L  A P P R O A C H  

When the exact solution (7) cannot be reduced to a form that is computable in a 
practical sense (this is unfortunately almost always the case), approximate approaches 
must be employed. There are two possible kinds of approaches. One is to apply 
approximation methods to the exact solution (7). The other kind of approach--the 
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one to be emphasized in the present paper--is to go back to the problem of minimizing 
the mean square error and employ direct variational methods. 

A typical procedure is to consider a limited class of possible estimators labeled by 
a vector parameter y, say r ~), and then minimize the corresponding mean 
square error 

E[~({p}, ~,) - r ~D)] ~ (15) 

with respect to ~,. 
From a practical calculational point of view it is desirable to consider equivalent 

forms of the variational problem (6). One equivalent form is the minimization of 

Ew({p})[~({p})  - -  r ai})12 (16) 

where the weighting functional w({p}) is positive. It can be readily proved that the 
exact solution of the minimization of (16) is independent of w and therefore it is 
given by (7). It is possible to make w depend on the form of ~, but only af ter  the 
minimization has been carried out. The above equivalent variations of the original 
minimization problem provide a much broader basis for approximation techniques. 

5. T H E  CLASSICAL STATIST ICAL M E C H A N I C S  OF I N T E R A C T I N G  
PARTICLES 

In the present section we will show that the exact solution of the problem of the 
recognition of multiple target patterns discussed in the previous sections is mathe- 
matically identical to the problem of calculating the average value of a certain 
observable in a canonical ensemble of classical systems of interacting particles. We 
will demonstrate this by further analysis of P({sl, c~} I {#5}) given by (13). For the 
sake of simplicity let us confine our discussion to the case in which the a pr ior i  
distribution of the target positions and internal states, i.e., P({s~, c~}) is constant. 
Equation (13) can now be written as 

1 ' 
log P({s~, o~i} I {t~)) = - 2 ~ ( ~ ,  ~J) -t- ~ (~, ,  t~) + f  (17) 

where 
1 f :  -~-  ~ 11 o,~ I / " -  ~11 ~11 '~ + B (18) 

where in turn B is a constant independent of p and {si, ~i}. The prime on the sum- 
mation denotes the avoidance of terms for which i = j. 

Now let us further examine the terms in the above expression. The terms (ere, ~)  
can be written more fully in the form 

_-f s ,  , - -  , " )  o<: , . '  - -  , , ,  , 

= f dr f dr'a(r, ~i) D(r -- r') o(r' -- ss + si ,  c,j) (19) 

v(g)(si -- sj ,  . i ,  ~)  
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The dependence of v (2) on the functional forms of D and ~ are not explicitly noted. 
This result was obtained by replacing r and r' by r ~- s~ and r' ,-i- s~, respectively, 
and by using the fact that D(r) and a(r) are periodic with period [2. It is clear that 
vI21(s~ -- sj ,  ~ ,  %.) is a periodic function of si -- st with the same period. Although 
it is impossible for a periodic function to be isotropic (i.e., spherically symmetric), 
it is nevertheless possible for v (~) to be isotropic in a limited region if that region is 
contained within the region ~2. It is obvious that II ~ II ~ = (~i ,  ~ )  is independent of si ,  
but in general depends on ~i. The term ( ~ ,  p) can be written 

(ei ,  ~) = f dr f d r % ( r -  si ,  ~ i ) D ( r -  r')fi(r') 
Y2 f2 

= f~  dr f~  dr'a(r, ~i) D(r -- r') p(r' -t- si) (20) 

__--_ -v(i,(s~, ~i)  

using procedures similar to those used in (19). We can now write (17) in the form 

1 ' 
log P({si, ~i) I {p}) = - ~ ~.. /)(2)($i - -  Sj ' ,  Cgi, O~j) - -  2~; /){1)($i , ~ i )  -}- f (21) 

The quantity f given by (18) contains the term 

(22) 

which, as we have already stated, is independent of the si but may in some cases 
depend on the a i .  

The reader will note that (21) is identical to the configurational distribution 
function associated with the canonical distribution of classical particles involving 
binary interactions and acted upon by an arbitrary external force. From this point 
of view fi-lvI2)(s~ -- sj ,  ~ ,  ~)  can be regarded as the interaction potential between 
particles i and j located at positions s~ and sj,  and having internal states a~ and a j .  
In the expression above fi-z = kT, where k is the Boltzmann factor and T is the 
absolute temperature. Similarly, fi-lvIll(s~, ~i) can be regarded as the contribution 
of the external force to the potential energy of particle i having position si and internal 
state ~ .  

It is quite possible that, if the interaction energy fi-lv I~l is chosen in advance 
without any concern for the corresponding pattern recognition problem, it may be 
inconsistent with (19). A necessary and sufficient condition that a v (2) chosen in 
advance be consistent with (19) is that v (2) be positive indefinite in the sense that 

f dsl de~l f ds2 de~2u(sl, al) vl2)(sz -- ~2) u(s2, c~) ~> 0 (23) S2,  (El,  

for any real function u(s, o 0. An equivalent condition is that the spatial Fourier 
transform of v (2) be nonnegafive definite with respect to the variables e~ z and e~2. 
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We hasten to remark that such a condition does not imply that v (~) must be non- 
negative everywhere. It is possible that v (2) can represent a typical potential with 
mutual attraction for large and repulsion for small separation distances. The non- 
negativity of the Fourier transform of v (2) is achieved by having the potential 
sufficiently large and positive for small distances, Wherever v (2) >> 1, i.e., fi-lv(2) >> kT,  
it does not matter how large it is. For example, if v (~) = 10 for a certain configuration 
given by the position Sl and s2, then the corresponding probabilities will be e 1~ times 
smaller than at another configuration where v (2) ~ 0. Increasing v (2) by a factor of 2, 
say, at the former configuration makes very little difference since a relative probability 
of e -~~ is already so small that a revised value of e -2~ would make essentially no 
difference in any averaged observable of physical significance. 

In statistical mechanics we will also be interested in cases of a priori distributions 
other than P({s~, ai}) = const. For example, if we wish to localize each particle to a 
lattice site x i ,  we would write 

P ( { s i ,  c~i}) = P({c~i}) l--[ 3(sj - -  xj)  (24) 
6 

Another case is one where hard sphere repulsion is to be accounted for without 
allowing v (~ to become unbounded. Here, for example, one could take 

P({si, ~i}) = const, I si -- sj [ ~> a, for all pairs i j ,  i =/= j 

= 0 otherwise (25) 

Other examples involve special assumptions concerning the parameters a i .  For 
instance, if one wishes to cancel out the terms ~ If cri I[ 2 in f given by (22), one can 
include a compensating factor in P({s~, c~}), namely, exp(�89 Z II ei ][z). In this way one 
can eliminate potential self-energies dependent on the ~ .  Such a factor may destroy 
the normalizability of this distribution; however, this is unimportant since all that 
actually matters is the normalizability of  P({s~, ~} [ {t~}) and existence of the corre- 
sponding average value of ~b. 

If  the statistical mechanical objective is the calculation of the average value of 
some observable r ~i}), we have a problem with mathematically the same end 
objective as in the pattern recognition case. In the latter case the problem is to calculate 
the conditional average of the property r namely, E(r  I {P}), and in the former it is 
to calculate the average of r using the distribution function given in (21). Since the 
distribution function is actually P({si, c~} [{p}) using the notation pertaining to 
the pattern recognition case, it is clear that the averages of 4~ in the statistical 
mechanics and pattern recognition cases are identical if the proper correspondences 
have been made between the basic quantities in the two cases. 

6. C O M M E N T S  

We have thus established a mathematical connection between two apparently 
unrelated groups of problems, one group lying in the pattern recognition field, and 
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the other in the classical statistical mechanics field. With very few exceptions the 
problems in each group are equally insoluble. 

The two fields have hitherto evolved completely idependently of each other, so 
that at the present time two sets of approximation methodologies have been built 
up with rather little overlap. The value of the mathematical connection is to make the 
approximation methodologies of each field available to the other. As an example 
of methodological transfer, we present in the next two sections examples of the 
application of the approximate mean square optimization of estimators, a very well 
known technique in pattern recognition, to two problems in statistical mechanics: 
the one-dimensionai Ising model and the system of charged particles in a uniform 
background of  compensating charge. 

7. T H E  O N E - D I M E N S I O N A L  I S I N G  M O D E L  

The one-dimensional Ising model 4 is perhaps the simplest system of 
interacting particles amenable to exact treatment. In this system particles are situated 
at the discrete set of points labeled by n. The particle at the point n has two internal 
states a~ = 4-1. The energy of the system is assumed to be 

N N 

U = E Z ~n~n+z + Z b,~,, (26) 
~ = l  3 = 1  

where it is understood that ~N+~ = o~1. 
The partition function is given by 

exp(--flU) = Z(fi, {b,}) (27) 
{%} 

where, of course, the summation is over all values ~1 = • 1, ~2 = 4-1,..., o~N = 4-1. 
The partition function can be evaluated by rewriting (27) in terms of the matrix 
M(fl, b) whose elements are given by 

(~ ,  [ M(fi, b)l ~+1) = e x p [ - - f l ( e o ~ + l  + bo~,,)] (28) 

in which case (27) reduces to 

Z(13, {b~}) = Tr M(fi, bl) M(fl, b2) "" M(fi, bN) (29) 

If  all of  the be are assigned the common value b, the partition function is easy to 
evaluate by going over to a representation in which M(fl, b) is diagonal. In particular, 
for b = 0, we obtain for N large 

Z(fl, {0}) = (2 cosh 13E) zr (30) 

4 For a comprehensive review of investigations of the Ising model, see G. F. Newell and E. W. 
Montroll, Rev. Mod. Phys. 25:353-389 (1953). 
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One can use somewhat more elaborate matrix techniques to evaluate the average of o~,~ 
due to an external force acting only at m (i.e., b~ @ 0, b,  = 0 for n @ m). We obtain 
for large N 

E ~  = --(--tanh/3e)l~-~J tanh flb~ (31) 

This result is valid in the form given if m is large compared with the correlation length 
(-- log t tanh/3e [)-1. If  both fie and /3b~ are small compared with unity, the last 
result reduces to 

E ~  = --(--/3e) l~-~i/3bm (32) 

a result we will later reproduce using an approximation technique imported from 
the pattern recognition domain. 

As a preliminary to the accomplishment of the last objective we consider the 
relation 

N 

p(x) = ~, c~,~r(x --  n) + v(x) (33) 
n = l  

where the ~, are independent random variables each assuming the values • 1 with 
equal a priori probability. The function v(x) is a stationary Gaussian random process 
defined by the relations 

Ev(x) = O, Ev(x) v(x') = /3 - tS (x  -- x') (34) 

We require v(x) and e(x) to be periodic with period N. 
Equation (33) is a special case of (7) if we assume that p = 1 and C(x --  x') = 

/3-1~(x -- x'), and that the distribution function (8) is given by 

P({s~, ~})  = 2 -~v l-I ~(sn - n)[~(c% - 1) + ~(~n + 1)] (35) 
~b 

We will define the inner product of two arbitrary functions u(x) and v(x) by 

(u, v) = t3 dx u(x) v(x) (36) 
0 

and the corresponding norm by 

!1 u II = (u, u) l /2  (37) 

The a posteriori or conditional distribution of the {~}, given that p = fi, can be 
written 

_ -  - 

n 
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where 
N 

e,.~ = f dx cr(x -- m) e(x -- n) (39) 
0 

N 

b,  = - - f  dx ~(x -- n) ~(x) (40) 
0 

The summations involve all values n, rn - -  1 ..... N except for the fact that the prime 
on the double summation denotes the elimination of terms for which m = n. The 
additional quanity is given by 

g = - -  I[t ~[]2 _ 2 [I c~(x - -  n)l[ z + B (41) 

where B is a normalization constant. It  is obvious that g is independent of  the ~n 
and therefore it can be treated as an alternative normalization constant. It  is further 
clear that (38) is the distribution function corresponding to the canonical ensemble 
of  systems where energy U is given by (26) if 

E . ~ - e ,  ] n - - m  l---- 1 

= 0 ,  I n - - m l  > 1 (42a) 

with the exception that when n = 1, m = N, and vice versa, we assume 

In this case we obtain 

E1N = e~Vl = E (42b) 

1 t N 

where it is understood that ~N+I = ~1 �9 Thus it is clear that aside from a multiplicative 
constant P({~} ] {P}) given by (38) and exp(--/~U} with U given by (26) are equal. 
It  is to be noted that e ~  does not enter the problem. We cannot take en,~ = 0, because 
this would be inconsistent with (39). 

In the problem of least mean square estimation we attempt to estimate the 
observables c~ of interest and denote by ~ = ~({p}) the corresponding estimators. 
By inspection of (38) we see that the average value of any function of  the ~ must 
dependend on t~(x) only through the discrete set of  quantities b~ given by (40). 
Therefore, we will henceforth consider only estimators of the form c~, = ~({b~}). 
In the minimization of the mean square deviation of ~n from ~ ,  i.e., 

E ( ~ n -  a~)~ (44) 

where it is understood that in &~ the b~ entail the substitution of t~(x) by p(x) and 
where the a priori averaging operator E involves the random variables {~,} and the 
random process v(x) with no conditioning by ~(x). As we have already stated in 
Section 3, the exact solution of the minimization problem is obtained by setting ~n 
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equal to the a posteriori (conditional) average of c~., namely, ~.  = E(~. I {t3}), which 
is the same as averaging ~. using the distribution (38). 

We now consider this minimization problem using an approximate form of dn 
with adjustable parameters. Let us assume 

~.  = c~ + fi ~ a.mbm (45) 
q/z 

and attempt to minimize (44) with respect to the adjustable parameters c~ and a ~ .  
We obtain the moment equations 

E ( G  - ,~.)  = o 
(46) 

E(~n --  cx~)b~ = 0 

from which we obtain 

and 

c~ = 0 (47) 

a~ (~ ~ e,~qeq~ + em~) = --e.~ (48) 
n q 

Multiplying (48) on the right by the inverse of the matrix E.m we obtain 

a,~m(fie,~ + 3m~) = - -3 .~  (49) 
m 

Using the invariance to translations (in the sense of periodic boundary conditions) 
by integral steps, it is clear that e,~m, and hence anm, can be diagonalized by going 
over to a representation defined by the basis vectors 

N-a/2e ikn (50) 

where k = 2~rpc/N, pc = 0 ..... N -- 1. Defining 

ak = N -1 ~ e -ikm amn e ikn 
qn~ 

Elc -~- i - 1  2 e-ikm Emn eikn 
(51) 

we then obtain the inverse equations 

amn ~- N -1 ~~ e ikm ak e -ikn 
k 

Emn ~-- N -1 ~ e i k m  ~k e-ikn 
k 

(52) 

If we use am~ and era, given by (52), Eq. (49) reduces to  

ak(&~ + 1) = - 1  (53) 

822/z/z-6 
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f rom which we finally obtain 

amn = - - N  -1 ~ ei'~'~(/3ek + 1) -1 e -~k~ (54) 
k 

the desired answer. F r o m  (39) it follows that  %~ is symmetric,  and hence (49) implies 
that  a,,~ is also symmetric.  Therefore,  (54) can be rewritten as 

a,,,~ = - - g  -1 ~, eikt~-'~l(/3,k + 1) -1 (55) 

Thus the response at the point  m due to a force at n depends only on the magni tude 
of  the distance f rom n to m, i.e., I m - -  n I, as one would expect. 

In  the limit N---> o% k becomes a cont inuous variable and the summat ion  is 
replaced by an integration, whereupon (54) reduces to 

1 
f2= dkdkl~-~l( 1 + %)-~ (56) amn -- 2~r 0 

I t  is convenient  to introduce the complex variable z = e i~ with a corresponding 
int roduct ion of  a new function e(z) = e~. ]n terms of  the new variable we can write 

1 
- -  2~i f r dz zl"-"t-l(fle(z) -k 1) -1 (57) a,mn 

w h e r e / "  denotes the unit  circle in the complex z-plane. 
Let  us consider the case where e is positive. I t  is easy to verify that  if we assume 

e(x) = d/2 ~ A ( x - - q N )  (58) 

where 

A(x) = 1, I x [  ~ 1 
(59) 

= 0 ,  I x l > l  

then (39) yields E ~  in agreement  with the assumpt ions  (42a) and (42b). We then 
obtain 

% = 2e(1 q- cos k) (60) 

= ~ ( 2 + z + z  -1) 

Substi tut ion of  (60) into (57) yields 

a m n  ~ - -  

where 

~ 1  + 4 3 ~  
(z+)l,~-< (61) 

Z .  b - -  

1 

23 e (1 + 2/3E --  ~/1 -k 43E) 

= - 3 ~  + 0(3 ~2) 
(62) 
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When fie ~ 1, Eq. (61) reduces to 

a ~  = --(--fie) l~-ni (63) 

Thus in this limit we obtain 

--  - 2 (--fle)t'~-nrfbm (64) 
m 

In the special case in which all of the b~'s vanish except for bin, Eq. (64) reduces to 

E~n = (_/%)1 . . . .  If bin (65) 

in perfect agreement with the exact result when fie and fibre are small compared with 
unity, namely, Eq. (32). 

The case of negative e can be treated by replacing A(x)  defined in (59) by another 
function M(x), where 

M(x) = 1, O < x <~ l 

= - - 1 ,  - - l ~ < x ~ < 0  (66) 

= 0 ,  I x t > l  

It is not correct simply to change the sign of e in (60). 

8. O N E - C O M P O N E N T  C L A S S I C A L  P L A S M A  

We consider a classical system of charged particles of one kind with a uniform 
smear of compensating charge. Let us assume that a particle at the origin is modeled 
by an extended charge distribution ~-(r), where r is a three-dimensional position 
vector. If  the total charge of each particle is e, we require 

f d r r ( r )  = e (67) 

The interaction potential for two isolated particles and positions s z and s2 is then 

f dh  f dr~ 7(ri --  sl) J rl -- r2 t -1 ~-(r2 -- s~) (68) 

However, this is not the whole story. We wish to introduce periodic boundary con- 
ditions. Let us assume that the system is confined to the cubic volume D defined 
by the inequalities 0 ~ x~ ~< L, i = 1, 2, 3, where the x~ are the components of r, 
i.e., r = (x~, x2, x~). Let us consider the lattice of points R defined by 

R = (Lna, Ln2, Ln3) (69) 
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where each ni assumes all integral values (positive and negative). In order  to achieve 
both  periodicity and a uni form compensating charge, we associate with each particle 
the charge distribution 

~(r) = Z ~-(r - -  R) - -  el2 -1 (70) 
R 

where the symbol g? is also used to denote the volume of  the region g2 (i.e., s = La). 
It is easy to show that  

f dr o(r) = 0 (71) 
g2 

thus, each particle carries its own compensating uniform distribution. The expression 
(68) is now to be replaced by 

f o  d r 1  f ~  dr2 o'(rl - -  SZ) i rl - -  r~ f -1 e(r~ --  s2) 

= fo dh fo dr2 e (r l -  s1) ~ } r l -  r~ -  g [-z e(r2- s2) 
R 

- -  V ( 2 1 ( S I  - -  S 2 )  

(72 

Al though the above integral converges, the kernel does 
However,  one can construct  another  function 

A(rl - -  r~) = k -2 e ik'(rl-r'} 
k 

not converge by itself. 

(73) 

that  does exist and can replace ~ R l r z  - -  rz - -  R [ -1 in the integral on the second 
line of  (72) withput changing its value. In (73) the summat ion  is over all integral 
values of  mz,  mz,  and rnz in 

2rrml 27rm2 21rm3 ) (74) 
k =  - L ' L ' L 

and the prime on the summation denotes the absence of  the k = 0 term. Therefore 
we will henceforth use the definition 

v(~)(sl --  s2) ~= f~  dr1 f o  dr~ e(rt  - -  sa) A(r~ --  r2)~(r2 --  s2) (75) 

in all fur ther  work. 
The contr ibut ion of  an arbitrary external potential  r not  necessarily a solution 

of  Laplace's equation, to the potential  energy of  a particle at s can be written as 

f ~  dr ~-(r - -  s) ~b(r) (76) 
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If  r is periodic with period ~ ,  the last expression differs from 

f d r a ( r  - -  s) r ~- vm(s) 

by a constant independent of s. 
The total potential energy of a system of N particles is clearly 

(77) 

1 Nt  N 
U = ~ ~ vC21(s,: -- sj) + ~ v~l'(s.i) (78) 

i , j = l  i = l  

and the corresponding canonical distribution function is proportional to exp(--/?U). 
To proceed with our approximation method, we consider 

N 

p(r) : ~ a(r -- s~.) + v(r) (79) 
/ = 1  

where a(r) is defined by (70). We assume that the positions si are uniformly distributed 
in the region D. The function v(r) is a stationary (spatially) Gaussian random process 
that is periodic with period f2. We have defined ~r(r) in such a way that 

f dr ~(r) = 0 
g2 

We now impose the same condition on v(r), namely, 

(80 

We further assume that 

f dr v(r) = 0 (81) 

E~,(r) = 0 

E~,(r) ~(r ')  = C( r  - r ' )  

1 
- -  V 2 3 ( r  - -  r ' )  ( 8 2 )  

4~/~ 

for r, r' ~ s In calculating the inverse correlation function we must allow for the 
fact that all functions are subject to constraints of the type (80) and (81); in other 
words, the uniform functions have been projected out of function space. Therefore, 
the inverse correlation function D(r) is given by 

f~  dr'C(r -- r') D(r'  - -  r") = 8(r -- r") -- f2-~ (83) 

reflecting the fact that the uniform part of the 8-function has been projected out. 
With C(r -- r') given by (82), we obtain the solution 

D(r) = flA(r) (84) 

where A(r) is defined by (73). 
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Let us define the inner product  

(u, v) __= e J9  dr f a  dr'u(r) D(r --  r') v(r') (85) 

with the corresponding norm II u il = (u,  u)l /~.  It is easy to show that  the a posteriori 
distribution function given by 

log P({si} I {/~(r)}) = - 1  t~ -- 2 ~r, lr -t- const (86) 

where ~ri = a(r -- si) is proportional to the canonical distribution function exp(--fiU), 
where U is given by (78), if we assume that  

J e  dr A(r --  r ') p(r') = -- ~b(r) (87) 

The term ( ~ ,  crj) is obviously equal to f iv(~)(si-  s~.) and the self-term I[ ai 112 can 
readily be shown to be independent of  s i .  

Now let us turn to the problem of  calculating the a posteriori average of  the 
microscopic number density 

N 

. ( x )  = n (x ;  {s~)) = y ,  ~ ( x  - si)  (88)  
i = 1  

We will use the least mean square estimation technique employing the linear estimator 

h(x) = fi(x; {p(r)}) = a0(x ) + f dr al(x, r) p(r) (89) 

Minimizing E(n -- 8) 2 on ao(X) and az(x, r) yields the moment  equations 

Using the relations 

E(n --  8) = 0 (90) 

E(n -- 8)p(r ' )  = 0 (91) 

Ep(r) p(r') -= n0w(r -- r') 

En(x) p(r') = n0~r(r' --  x) 

where no ----- N/f2 and 

\ 

Ep(r) = E ~ ~r,-l-v) - ~ 0  (92) 

1 
4~r/3 Vz 3(r -- r') (93) 

(94) 

we obtain 

w(r --  r') = f o d s  r(r -- s) r(r '  -- s) (95) 

ao(X) = no (96) 
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and 

1 f - -  47r~  Vr2al(x' r) + n 0 ~ dr'  w(r - -  r ') al(x, r ') = n0a(r - -  x) (97) 

Of  particular interest is the case in which 

~-(r) ~ e~(r) (98) 

i.e., the charge distribution approaches a point  charge. In this limit we obtain 

w(r) --+ e2~(r) (99) 

and (94) can now be written as 

(--V~r 2 -{- A -2) al(x , r) = A-2e-l(~(r - -  x) - -  ~Q-1) (100) 

where 

A = (4~noe2fi)-l/~ (101) 

is the well-known Debye length. Translat ional  invariance implies that 

az(x, r) ----- al(x, --  r) (102) 

and hence we can rewrite (100) in the form 

(- -Vz 2 -J- A -2) al(x - -  r) : Z-~e-l(S(x - -  r) - -  ~ - t )  (103) 

Since the exact opt imal  est imator ~ is equal to E(n [ {fi}), which in turn is the average 
of  n in the corresponding canonical ensemble, we will write ~ = if, where the bar  
denotes the canonical average. The linear est imator (89) can now be written as 

C 
~(x) - -  n0 : | dr al(x --  r) p(r) (104) 

s 

Operating on this equat ion by ( _ A 2  _}_ Z-2) and using the fact that  f~ drp(r) ---- 0, 
we obtain 

(--V~ 2 + a-2)(~(x) - -  "0) = A-2e-io(x) (105) 

which is a well-known alternative form of  the Poisson-Bol tzmann equation giving 
the response o f  the average number  density to a given fixed charge distribution equal 
to --p(x).  This result is known to be exact in the limit o f  low concentrat ion [and 
small p(x)]. 

9. C O N C L U S I O N S  

We have established a mathematical  connection between the problem of  the 
recognition of  specified properties of  patterns containing many targets, on one hand, 
and the calculation of  the average value o f  certain observables in a canonical ensemble 
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of classical systems of interacting particles, on the other. This connection enabled us 
to transfer the least mean square estimation technique from the pattern recognition 
domain over to the statistical mechanics domain. Using the simplest nontrivial 
approximate forms of the estimators, i.e., linear forms, we obtained results pertaining 
to the one-dimensional Ising model and the one-component plasma that are known 
to be exact in certain limits. 

Although considerable space was devoted in each case to defining the statistical 
mechanical problem and showing its connection with least mean square estimation, 
the essential steps involved in the actual approximation procedure were relatively 
straightforward and simple. These results give us hope that significantly better answers 
would be obtained by adroit choices of more elaborate forms of estimators. The 
author is currently investigating the application of these techniques to the classical 
statistical mechanics of liquids, liquid-solid and liquid-vapor phase transitions, 
dielectric phenomena, and dense plasmas. 


